
Mini Reviews in Medicinal Chemistry, 2001, 1, 197-205 197

Pharmaceutical Target Identification by Gene Expression Analysis

Michael G. Walker*

Incyte Genomics, 3174 Proter Dr., Palo Alto, California, USA

Abstract: The majority of newly-identified genes in the human genome show no significant sequence similarity
to genes whose function is known, so they are not easily recognized as potential drug targets. Expression
analysis is an alternative method to suggest possible functions of genes. We review statistical methods for gene
expression analysis to identify potential pharmaceutical targets. Specifically, we illustrate the analysis of
differential gene expression (using discriminant analysis, t-tests, and analysis of variance) and co-expression
(using correlation, clustering, and chi-square). We present an example of the use of expression analysis to
identify co-expressed cardiomyopathy-associated genes.

1. CANDIDATE DRUG TARGETS AND GENE
EXPRESSION DATA

2.1 Differential Expression (Discriminant Analysis and
Analysis of Variance)

The DNA sequence of the human genome is now known.
However, we still need to determine which genes are
involved in disease. The majority of newly-identified genes
in the human genome and in other genomes show little or
no significant sequence similarity to genes with currently
known function, so we need alternatives to sequence
analysis. Gene expression data are available via expression
microarrays; expression data may be readily collected for
10,000 genes with a single array [1, 2]. Expression data
provide an alternative to sequence data to identify genes that
may be candidate drug targets.

Researchers have long sought genes that are differentially
expressed in disease versus non-disease states, and several
groups have demonstrated the use of microarrays for this
purpose [5-9].

An early approach to identifying differentially-expressed
genes was simply to search for genes that were detected in
one tissue or disease-state and not detected in the second
tissue or disease-state. This method is sometimes useful, but
suffers the obvious problem that expression may be altered
with significant pathogenic effect without a gene necessarily
being turned on or off. Soon after, the algorithms were
modified to identify genes that show multi-fold changes in
expression between the two disease states. This method is
often useful, but may fail to identify interesting genes when
the expression levels of the genes show large variance. Large
variances are common in microarray expression
measurements, because of variability in the sample
preparation, in the arrays, and among patients. When
expression levels show high variance, we may observe a
seemingly large difference between two samples simply
because of random error. In these situations, a more
appropriate analysis method is discriminant analysis. Linear
discriminant analysis considers both the difference in average
expression between two groups and the variability of
expression within each group. Specifically, linear
discriminant analysis seeks to identify genes that have the
best ratio of the difference in expression between two states
to the variance of expression within each state. Figure 1
shows a hypothetical example of the expression level of a
gene in two different groups, cancer versus non-cancer
patients. Given the measured expression of the gene in a
patient, linear discriminant analysis would give the
probability that the individual belongs to one of the two
groups.

2. STATISTICAL METHODS TO IDENTIFY
DISEASE-ASSOCIATED GENES

Expression data from experiments from even a single
microarray require computational tools for analysis. A recent
review on clustering methods for expression data may be
found in [3]. General introductions to clustering,
discriminant analysis, and other statistical methods may be
found in texts or reviews on multivariate statistics [4].
Collections of articles on algorithms and statistics for gene
expression analysis may be found at the web sites
http://www.cgl.ucsf.edu/psb/ and http://industry.ebi.ac.uk/
~alan/MicroArray/. Here we will illustrate the analysis of
differential gene expression (using discriminant analysis, t-
tests, and analysis of variance) and co-expression (using
correlation, clustering, and chi-square). In a later section we
present an example of co-expressed cardiomyopathy-
associated genes.
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Fig. (1). Discriminant analysis: cancer vs. non-cancer.

It is often desirable to use more than one gene to classify a
sample; Figure 2 is a hypothetical example showing the use
of two genes (genes 1 and 2) to discriminate between two
classes (classes A and B), where the classes might be cancer
versus non-cancerous samples.

gene or combination of genes that best distinguishes between
the disease states. There are numerous algorithms and
software packages available for discriminant analysis; there
are also algorithms that do not make the assumptions of
linear partitions used in the examples given here [4].
Discriminant analysis is not limited to the case of two
classes; it can readily analyze data from multiple classes, for
example, non-cancerous, dysplastic, and cancer.

In a microarray experiment we may generate data on
10,000 or more genes, so it is not feasible to manually
examine results for each gene one at a time to determine
which single gene or which combination of genes best
discriminates between the classes of interest. An alternative
is stepwise discriminant analysis software, which can search
through each of the thousands of genes to identify the single

After we identify a gene or a small set of genes that
appear to be differentially expressed in disease versus non-
disease states, we should perform experiments to attempt to
confirm the supposed differential expression. For these

Fig. (2). Discriminant analysis using two genes.
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Fig. (3). Analysis of variance for three drugs.

experiments, we should measure the expression level of the
gene(s) several times in each of the disease states. However,
we should consider the variability in the measurements. To
decide if the difference between the two groups is statistically
significant, we should consider both the difference between
the two groups in their mean expression, and the error in
estimating the means. T-tests (for exactly two groups) and
analysis of variance (for two or more groups) are suitable
statistical tests in this situation. Figure 3 shows
hypothetical data for an analysis of variance (ANOVA) of
gene expression in response to three drugs. The t-test or
ANOVA will indicate the probability the observed
differences between the classes could have occurred by
chance.

2.2.1 Correlation

Correlation is a measure that describes a particular type of
association between two genes. It is also the basis of several
clustering methods. The most commonly used correlation
statistic is Pearson’s linear correlation coefficient, r. It has a
maximum value of one when two variables (such as the
expression levels of two genes in various tissues) are exactly
linearly proportional. Figure 4 shows possible data giving
correlation coefficients near 1, 0, and –1. For perfect linear
correlation, an increase in one variable occurs with an exactly
proportional increase in the second variable. The Pearson
correlation has a minimum value of negative one when the
two variables are exactly inversely linear proportional (one
increases as the other decreases). If two variables show no
linear relation, then the Pearson correlation is zero.

2.2 Co-expression (Correlation, Association, and
Clustering) Suppose we have data such as that shown in Table 1,

showing the expression levels of three genes, A, B and C, in
five different tissues. Genes A and B show very similar
expression across the tissues, and have a correlation
coefficient of 0.99, while gene C is quite different from the
others, and has a correlation with both A and B near 0.0.

The most widely-used expression analysis techniques,
after differential expression, are based on examination of the
co-expression of two or more genes. The commonly-used
methods include correlation, clustering, and other measures
of association [10-14], which we examine next.

Fig. (4). Linear correlation near 1, 0, and –1.
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Table 1. Hypothetical Expression Levels of Three Genes observed co-occurrence of the genes differs significantly from
that expected by chance; in this case the probability is
0.0003.

Brain Heart Muscle Liver Prostate

We have used this method of analysis to identify genes
involved with a variety of diseases, including prostate cancer
[13], Parkinson’s disease and schizophrenia [15] and others.
In the final section of this paper, we give an example of
genes associated with cardiomyopathy identified using this
method. The chi-square test will usually have less power
than Pearson or Spearman correlation to detect linear or
monotonic relationships.

Gene A 0 4 18 7 25

Gene B 0 6 16 7 23

Gene C 6 4 6 9 6

A difficulty with Pearson linear correlation is that genes
may be associated but not have a linear relationship. There
are several alternatives to Pearson correlation to measure
such non-linear associations. Spearman rank correlation,
which uses the rank of each data point rather than its actual
value, is less sensitive to outliers and extreme values than is
Pearson linear correlation, and is useful for detecting
monotonic (constantly increasing or decreasing)
relationships. Another alternative is the chi-square test, in
which we treat each gene as either expressed or not-expressed
in a given sample, and measure the co-occurrence of the two
genes. The chi-square test can detect relationships that are
non-linear or non-monotonic, and that would therefore fail to
be detected by Pearson linear or Spearman rank correlation.
We present an example of the use of the chi-square test in the
next section.

2.2.3 Cluster Analysis

Cluster analysis comprises a set of methods that help us
to compare and visualize relationships among objects (such
as sets of drugs or sets of genes) so that we can perceive
which are similar and which are dissimilar from each other.
Suppose that we examine the expression patterns of five
genes in a variety of tissues (or when a tissue is treated with
a variety of drugs at different doses). We can calculate the
pairwise correlations of the five genes amongst themselves,
and might get data such as that in Table 3.

Table 3. Pairwise Correlations of Expression Among Five
Genes

Gene 1 Gene 2 Gene 3 Gene 4 Gene 52.2.2 Categorical Measures: Chi-Square Test of
Association

Gene 1 1.0 .9 .5 .4 0

In some cases, linear or rank correlation will fail to detect
associations among genes. Many genes that are known to be
associated do not have the linear or monotonic relationships
that these methods assume, and in some cases quantitative
measurement may not be sufficiently accurate or
reproducible. In such cases, we may choose to encode the
level of gene expression as simply “on” or “off”, rather than
use the quantitative information. We then look for a
categorical association, in which both genes are turned on or
both are turned off at the same time. This approach also
reflects the usual situation in which most genes are not
expressed in most tissues, and co-expression suggests related
function.

Gene 2 1.0 .5 .4 0

Gene 3 1.0 .8 0

Gene 4 1.0 0

Gene 5 1.0

In these hypothetical data, notice that genes 1 and 2 are
highly correlated (r = 0.9), genes 3 and 4 are highly
correlated (r = .8), and gene 5 is not correlated at all with the
other genes (r = 0.0). To create a hierarchical (tree-structured)
cluster such as that shown in Figure 5, we successively join
the most-correlated pairs of genes, so that the cluster tree
will indicate that genes 1 and 2 are highly correlated, genes
3 and 4 are highly correlated, and gene 5 is distant from the
other genes.

If we examine the expression of two genes in cDNA
libraries from, say, 30 tissue samples, we can summarize
their co-expression as shown in Table 2. We use a chi-
square test or a Fisher exact test (in the case of small
expected values in any cell in the table) to determine if the There are many algorithms to produce clusters [4]. In

addition, dimension-reduction methods such as multi-
dimensional scaling and principal components analysis can
provide visual displays that indicate similar and dissimilar
genes identified under diverse experimental conditions in a
way that clustering algorithms cannot. These methods are
described in most texts on multivariate statistics.

Table 2. Summary of Co-Expression for Genes A and B in
30 cDNA Libraries

Number of libraries Gene A present Gene A absent Total

Gene B present 8 2 10

Gene B absent 2 18 20

Total 10 20 30

2.2.4 Other Applications of Gene Expression Data in
Drug Research

We can use correlation to indicate the likely mode of
action of a drug. Suppose that we have expression data for
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Fig. (5). Hierarchical clustering based on expression of five genes.

two antibiotic drugs A and C, each with a known mode
action, such as that in Table 4. Drug A targets the bacterial
cell membrane while drug C targets the ribosome. We want
to know the mode of action of drugs B, D, and E.

the experiment, to have confidence in the results. We may
wish to display the correlations among several drugs, in
which case we may use cluster analysis, as shown in Figure
6.

Consider the following hypothetical experiment. We
grow the bacteria of interest in a test tube, take three samples
from the tube, and treat each of the three samples with one of
the three drugs. We then measure the expression levels of
each of, say, 1000 genes. We calculate the pairwise
correlation of gene expression among the five drugs. If the
expression pattern of drug B is most similar to that of drug

We can use correlation to examine the effect of a
compound or drug on the expression levels of a gene.
Consider the possible effects of the compound benzene on the
expression levels of two genes, as shown in Figures 7 and 8.

In Figure 7, we see that as we increase the concentration
of benzene, there is an increase in the level of expression of

Table 4. Expression Levels of Genes in a Tissue Treated with Five Drugs

Mode of action Gene 1 Gene 2 Gene 3 … Gene 1000

Drug A Cell membrane 0 100 65 … 0

Drug B ? 0 98 63 1

Drug C Ribosome 80 0 70 … 100

Drug D ? 81 0 75 … 120

Drug E ? 18 4 44 7

A, as in this example (the correlation, r, is near 1.0), then
the mode of action of drug B is most like that of drug A. Of
course, in practice, we would prefer to use multiple drugs
with the same mode of action for each class, and to replicate

the first gene (high correlation). In Figure 8, we see that as
we increase the concentration of benzene, there no clear
pattern in the level of expression of the second gene (low
correlation). The first result would indicate that benzene

Fig. (6). Clustering of drugs to indicate mode of action.
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Fig. (7). Gene expression correlated with benzene concentration.

affects the first gene, while the second result would indicate
that benzene has little effect on the expression of the second
gene. While correlation indicates that there is a relationship
between two genes, or between a gene’s expression level and
the concentration of a compound such as benzene, it does not
tell us quantitatively how much the gene expression
increases per unit of benzene. Regression analysis provides
us with such quantitative information, and might indicate,
for example, that for every unit increase in benzene there is a
doubling of the gene expression (regression slope = 2).
Quantitative information from regression analysis guides

decisions on how much drug to give to achieve the desired
response.

3. AN EXAMPLE: CO-EXPRESSION OF KNOWN
CARDIOMYOPATHY-ASSOCIATED GENES

In this section, we present an example, using the chi-square
method described above, of the co-expression of genes
associated with cardiomyopathy. In this analysis, we
examined the expression pattern of human genes in cDNA

Fig. (8). Gene expression not correlated with benzene concentration.
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Table 5. Known Cardiomyopathy-Associated Genes

# Gene description

1 Atrial regulatory myosin. Regulatory isoform in atrial muscle.

Differentially expressed in cardiovascular development and disease.

[16, 17]

2 Cardiac alpha-myosin heavy chain. Altered expression in heart failure.

Mutation in myosin heavy chain causes hypertrophic cardiomyopathy.

[18-20]

3 Cardiac myosin alkali (essential) light chain (ventricular)

Differentially expressed in myocardial hypertrophy.

[16, 18, 19, 21, 22]

4 Cardiac troponin. Marker of cardiac injury.

[23-25]

5 Cardiac ventricular myosin. Expressed in remodelling after infarction.

[16, 21, 26]

6 Cardiodilatin (atrial natriuretic factor). Induces vasorelaxation.

Differentially expressed following myocardial infarction.

[27, 28]

7 Creatine kinase M. Marker of cardiac injury.

[23-25]

8 Myoglobin. Marker of cardiac injury.

[23-25]

9 Natriuretic peptide precursor. See cardiodilatin.

[27, 28]

10 Sarcomeric mitochondrial creatine kinase.

Essential enzyme in energy metabolism, particularly in tissue with high energy requirements such as heart.

[29, 30]

11 Telethonin. Sarcomeric protein of heart and skeletal muscle.

[31, 32]

12 Titin. Temporal and spatial control of sarcomere assembly.

Differentially expressed after atrial fibrillation.

[32, 33]

13 Troponin C. Troponins are markers of cardiac injury.

[23-25]

prepared from 522 libraries of diverse anatomic and
pathologic origin. Genes selected at random in this data set
typically show a probability of co-expression due to chance
of 10E-3 or greater, as measured using the Fisher exact test.
For example, if we examine the co-expression of two genes
with no known relationship, myosin and elongation factor 1-
alpha, there is no evident pattern to their co-occurrences, and
the probability that their (seemingly random) co-expression
is due to chance is about 0.1. By contrast, genes with
known relationships usually have p-values less than 10E-6.

To illustrate the co-expression of functionally related
genes, consider the set of 13 genes known to be involved in
cardiomyopathy listed in Table 5. The co-expression of
these genes is shown in Table 6. Each entry in this table is
the negative log of the probability that the observed
association is due to chance (for example, a p-value of
0.00001 yields an entry of –log(0.00001) = –log(10E-5) = 5.
Thus, large values in the table indicate very small
probability. From this table, we see that the analysis readily
identifies that these known genes are co-expressed, and thus
likely to be related in function, when compared to the p-



204    Mini Reviews in Medicinal Chemistry, 2001, Vol. 1, No. 2 Michael G. Walker

Table 6. Co-Expression of 13 Known Cardiomyopathy-Associated Genes (Numbered 1 Through 13). Table Entries are
Negative Log of the Probability that the Observed Association is Due to Chance

1 2 3 4 5 6 7 8 9 10 11 12 13

1 36 16 16 16 14 15 14 16 15 16 15 14 14

2 16 35 14 15 14 12 15 16 13 16 17 13 16

3 16 14 56 16 26 9 25 26 10 19 26 22 28

4 16 15 16 41 16 12 18 16 9 14 13 11 19

5 14 14 26 16 85 8 39 37 8 22 29 30 28

6 15 12 9 12 8 46 9 11 9 10 8 9 8

7 14 15 25 18 39 9 80 41 8 26 32 37 33

8 16 16 26 16 37 11 41 85 10 27 35 31 35

9 15 13 10 9 8 9 8 10 22 9 9 7 10

10 16 16 19 14 22 10 26 27 9 68 22 21 23

11 15 17 26 13 29 8 32 35 9 22 63 27 27

12 14 13 22 11 30 9 37 31 7 21 27 79 25

13 14 16 28 19 28 8 33 35 10 23 27 25 85

values observed for unrelated genes. Five previously
uncharacterized genes (Genbank AW755250 to AW755254)
are co-expressed with the 13 known genes and may also be
associated with cardiomyopathy.
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